Additions and Corrections

Vol. 63, 1998

Brian D. Lenihan and Harold Shechter*. Synthesis and Conversions of Substituted *o*-[(Trimethylsilyl)methyl]benzyl-*p*-Tolyl Sulfones to *o*-Quinodimethanes and Products Thereof.

Pages 2076–2077 and 2083–2084. NOE now reveals that **49b** is produced (20 and 37%) in preference to **49a** (6 and 9%). The ¹H NMR of **49a** and **49b** are as follows:

$$0.4\%$$
 3.3%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.6%
 0.8%
 0.8%
 0.8%
 0.8%
 0.8%
 0.8%
 0.8%
 0.8%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%
 0.9%

49a (CDCl₃) δ 0.93 (3H, t), 1.82 (3H, d, J = 6.8 Hz), 2.31 (3H, s), 2.4–2.5 (2H, m), 5.3–5.4 (1H, m, J = 6.8 Hz), 7.0–7.3 (4H, m); **49b** (CDCl₃) δ 1.04 (3H, t), 1.42 (3H, dt, J = 6.7, 1.2 Hz), 2.25 (3H, s), 2.30–2.35 (2H, m), 5.59 (1H, qt, J = 6.7, 1.2 Hz), 7.0–7.3 (4H, m). Because the phenyl groups and the olefinic double bonds in **49a** and **49b** are not coplanar, the vinyl hydrogen in **49b** is more deshielded and its NMR signal is downfield relative to that in **49a**. For discussion of such effects, see: (a)

Martin, G. J.; Martin, M. L. *Progress in Nuclear Magnetic Resonance Spectroscopy*; Emsley, J. W., Feeney, J., Sutcliffe, L. H., Eds.: Pergamon; Oxford, 1972; Vol. 8, pp 175–177. (b) Hornback, J. M.; Barrows, R. D. *J. Org. Chem.* **1982**, *47*, 4285. We thank K. K. Wang, Chemistry Department, West Virginia University, for his inquiry about the assignments of **49a** and **49b**; T. Demuth, A. Russell, and D. Schory, Procter and Gamble Pharmaceuticals, and K. Vermillion, Chemistry Department, The Ohio State University, for conducting the NOE experiments; and C. M. Hadad, The Ohio State University, for calculating that **49a** is thermodynamically more stable that **49b**. In recent experiments, dehydration of 3-o-tolyl-3-pentanol with P_2O_5 at \sim 25 °C has been found to give **49a** in higher yields than **49b**.

JO9940087

10.1021/jo9940087 Published on Web 10/01/1999

Vol. 64, 1999

Hubert Mimoun. Selective Reduction of Carbonyl Compounds by Polymethylhydrosiloxane in the Presence of Metal Hydride Catalysts.

Page 2586, column 1. Jojoba oil, an ester mixture of straight chain $C_{18}-C_{24}$ (Z)-monounsaturated acids and alcohols, was cleanly and almost quantitatively converted into a mixture of oleyl alcohol (C_{18} :1, 6.5%), (Z)-11-icosen-1-ol (C_{20} :1, 59.4%), (Z)-13-docosen-1-ol (C_{22} :1, 26.8%), and (Z)-15-tetracosen-1-ol (C_{24} :1, 3.9%).

In the Supporting Information, (Z)-9-icosen-1-ol, (Z)-9-docosen-1-ol, and (Z)-9-tetracosen-1-ol should be replaced with (Z)-11-icosen-1-ol, (Z)-13-docosen-1-ol, and (Z)-15-tetracosen-1-ol, respectively.

JO994010Y

10.1021/jo994010y Published on Web 10/01/1999